A Convenient Synthesis of 3-(4-Pyridinyl)quinolines Baldev Singh* and George Y. Lesher [1]

Sterling Research Group, Rensselaer, NY 12144, USA Received February 5, 1991

3-(Arylamino)-2-(4-pyridinyl)acroleins 3 prepared by reacting anilines 1 with 3-(dimethylamino)-2-(4-pyridinyl)acrolein (2) were cyclized with phosphorus oxychloride or acetic acid to give 3-(4-pyridinyl)quinolines 4.

J. Heterocyclic Chem., 28, 1453 (1991).

3-(4-Pyridinyl)quinolines were needed in our laboratory for cardiovascular testing. A literature search revealed only a few examples of 3-arylquinolines. In 1943, Coates et al. [2] reported the coupling of 3-quinolinediazonium chloride with pyridine and isolation of two (2-pyridinyl) and 3-pyridinyl) of the three possible isomeric 3-(pyridinyl)quinolines. Later, in 1972, Jutz and Wagner [3] published the synthesis of 3-phenylquinoline and 6-methoxy-3-phenylquinoline by the thermal cyclization of Schiff bases [prepared by reacting the adduct obtained from 3-(dimethylamino)-2-phenylacrolein and dimethyl sulphate with aniline or p-anisidine] at high temperature (180-200°). We report here a convenient synthesis of 3-(4-pyridinyl)quinolines by the cyclization of 3-(arylamino)-2-(4-pyridinyl)acrolein (3) under mild conditions.

Michael reaction of anilines 1 with 3-(dimethylamino)-2-(4-pyridinyl)acrolein (2) [4] followed by the elimination of

dimethylamine resulted in the formation of 3-arylamino-2-(4-pyridinyl)acroleins 3 which were used in the next step without isolation.

When 3-(3,4-dimethoxyphenylamino)-2-(4-pyridinyl)-acrolein (3a) [prepared by reacting 3,4-dimethoxyaniline (1a) with 3-(dimethylamino)-2-(4-pyridinyl)acrolein (2) [4]] was treated with phosphorus oxychloride, 6,7-dimethoxy-3-(4-pyridinyl)quinoline (4a) was obtained in 34% yield (procedure A). Later, it was discovered that acroleins 3 which have activating groups in positions 3 or 5 or both positions of the phenyl ring undergo cyclization readily in acetic acid (procedure B). The lack of an activating group in these positions has a detrimental effect on the yield. For example, 3c failed to cyclize in acetic acid and gave quinoline 4c in 20% yield on cyclization in phosphorus oxychloride

Table I

Compound	Method	Mp (°C)	Yield (%)	Molecular Formula	Analysis Calcd./For C H		¹ Η NMR [a,b,c] δ
4a							4.02 (s, 6H, 2 x OCH ₃), 7.02 (d, 1H), 7.41 (d, 1H), 7.54 (d, 2H, pyrimidine H-3, H-5), 8.1 (d, 1H, H-4), 8.68 (d, 2H, pyridine H-2, H-6), 8.93 (d, 1H, H-2)
4b	A	136-138	53	$C_{14}H_9CIN_2$	69.86 3.77		$7.6-8.04 (m, 7H, 3ArH + C_5H_4N), 8.69 (d, 1H, H-4),$
					70.16 3.68		9.26 (d, 1H, H-2)
4 c	A	145-147	20	$\mathrm{C_{15}H_{12}N_{2}O}$	76.25 5.12		3.97 (s, 3H, OCH ₃), 7.46-7.98 (m, 5H, 3ArH + pyridine
					76.19 5.13	11.84	H-3, H-5), 8.68 (d, 1H, H-4), 8.75 (d, 2H, pyridine H-2,
							H-6), 9.15 (d, 1H, H-2)
4d							$4.0 \text{ (s, 3H, OCH}_3), 7.35-8.0 \text{ (m, 5H, 3ArH + pyridine}$
							H-3, H-5), 8.69 (d, 2H, pyridine H-2, H-6), 8.75 (d, 1H,
							H-4), 9.28 (d, 1H, H-2)
4e	В	122-125	51	$C_{16}H_{14}N_2O$	76.78 5.64	11.19	$1.43 (t, 3H, OCH_2CH_3), 4.23 (q, 2H, OCH_2CH_3),$
					76.82 5.70	11.22	7.43-7.99 (m, 5H, 3ArH + pyridine H-3, H-5), 8.72 (d, 2H,
							pyridine H-2, H-6), 8.74 (d, 1H, H-4), 9.28 (d, 1H, H-2)
4f	В	173-175	55	$C_{16}H_{14}N_2O_2$	72.17 5.30	10.52	$3.96 (s, 3H, 0CH_3), 4.03 (s, 3H, 0CH_3), 6.57 (d, 1H),$
					72.15 5.42	10.57	7.07 (d, 1H), 7.65 (d, 2H, pyridine H-3, H-5), 8.71 (m, 3H,
							H-4, pyridine H-2, H-6), 9.12 (d, 1H, H-2)
4g	В	175-177	42	$C_{16}H_{14}N_2O_2$	72.17 5.30	10.52	4.03 (s, 3H, OCH ₃), 4.11 (s, 3H, OCH ₃), 6.82 (d, 1H), 7.1
					72.22 5.27	10.46	$(d, 1H), 7.67, 8.75 (A_2B_2, 4H, C_5H_4N), 8.81$
							(d, 1H, H-4), 9.22 (d, 1H, H-2)
4h	В	127-129	58	$C_{17}H_{16}N_2O_3$	68.91 5.44	9.45	4.02 (s, 3H, OCH ₃), 4.04 (s, 3H, OCH ₃), 4.14 (s, 3H,
					68.69 5.42	9.41	OCH ₃), 7.28 (s, 1H, 8-H), 7.60, 8.71 (A ₂ B ₂ , 4H, C ₅ H ₄ N), 8.57 (d, 1H, H-4), 9.01 (d, 1H, H-2)

[[]a] The ¹H nmr spectra were recorded on Varian HA-100 spectrometer using tetramethylsilane as an internal standard. [b] The ¹H nmr spectra of 4a, 4f, 4g, and 4h were recorded in deuteriochloroform. [c] The ¹H nmr spectra of 4b, 4c, 4d, and 4e were recorded in DMSO d₆.

Scheme

EXPERIMENTAL

Typical Procedure A.

6,7-Dimethoxy-3-(4-pyridinyl)quinoline (4a).

A mixture of 3-(dimethylamino)-2-(4-pyridinyl)acrolein (2) [4] (30 g, 0.17 mole) and 3,4-dimethoxyaniline (1a) (25 g, 0.16 mole) was heated in an oil bath at 120-130° for 3 hours and then cooled in an ice bath. To the resulting yellow solid was added phosphorus oxychloride (75 ml). This mixture was heated under reflux for 3 hours and then poured over ice to give a brown solution which was neutralized by treating with concentrated aqueous ammonia. The resulting dark oil was extracted with chloroform (2 x 400 ml). Removal of chloroform gave 37 g of a dark oil which was crystalized from 2-propanol after decolorizing with charcoal to give yellow needles of 4a, yield 14 g (34%), mp 136-138°.

Anal. Calcd. for $C_{16}H_{14}N_2O_2$: C, 72.12; H, 5.30; N, 10.52. Found: C, 71.88; H, 5.35; N, 10.45.

Typical Procedure B.

7-Methoxy-3-(4-pyridinyl)quinoline (4d).

A mixture of 2 (17.2 g, 0.1 mole) and m-anisidine (1d) (13 g, 0.1

mole) was heated in an oil bath at 120-130° for 4 hours and then cooled to room temperature. After adding acetic acid (50 ml), the resulting mixture was heated on a steam bath for 7 hours and then poured into water (300 ml). The resulting mixture was made basic by treating with concentrated aqueous ammonia. The yellow precipitate was collected and recrystallized from 2-propanol to afford 4d as a pale yellow solid, yield 11.5 g (51%), mp 160-163°.

Anal. Calcd. for $C_{15}H_{12}N_2O$: C, 76.25; H, 5.12; N, 11.86. Found: C, 76.14; H, 5.11; N, 11.70.

Acknowledgement.

The authors are thankful to the Department of Molecular Characterization for the ¹H nmr spectra.

REFERENCES AND NOTES

- [1] Deceased.
- [2] H. Coates, A. H. Cook, I. M. Heilbron, D. H. Hey, A. Lambert, F. B. Lewis, J. Chem. Soc., 401 (1943).
- [3] C. Jutz and R. M. Wagner, Angew. Chem., Int. Ed. Engl., 11, 315 (1972).
 - [4] Z. Arnold, Collect. Czech. Chem. Commun., 28, 863 (1963).